

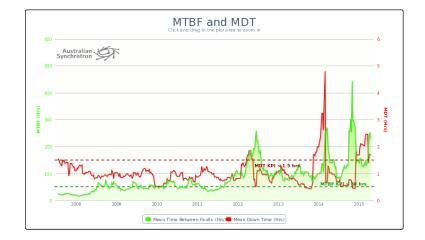
Can a FAILURE MODES and EFFECTS ANALYSIS (FMEA) improve RELIABILITY?

Don McGilvery (Operations) & David Tokell (Head of Engineering)

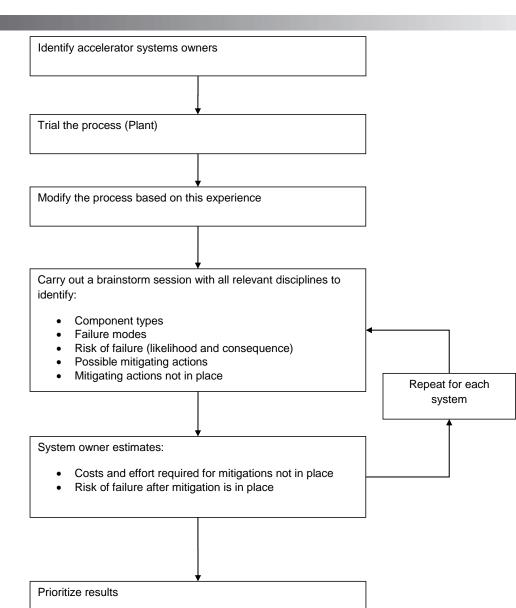
> Supported bv

Outline of This Talk

- What is a Failure Modes and Analysis (FMEA)?
- Goals Why we undertook an FMEA?
- Process How we undertook the FMEA?
- An example analysis on one system?
- Results of FMEA for the Accelerators
- High priority failure modes identified
- Work so far
- Other issues identified
- Conclusions



- Reliability Centered Maintenance (RCM) developed within the Aviation Industry in the 1960's
- It is now the Standard approach to maintenance in many industries
- An integral part of this process is to undertake a Failure Mode and Effects Analysis (FMEA) on a regular basis.
- It is important to include all major systems of your machine
- It is critical to try to identify all possible failure modes
- A key part of the process is to engage the support of the system owners, the system maintainers and the system users



- Address Key Performance Indicators
- Consider the Accelerators as a group of systems
- Define failure modes, risks and mitigating actions for each system
- Estimate risks associated with a failure after mitigation is in place
- Prioritize mitigating actions based on the risk reduction and the cost of the mitigation
- Produce a Management wish-list (hit list) (\$\$\$\$ + people)

Process

Plant

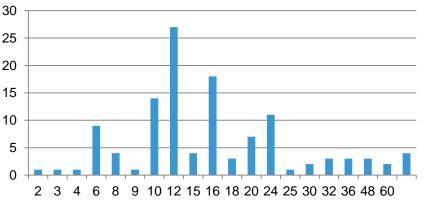
81 failure modes identified

- 21 Preventative Maintenance or Condition Monitoring
- 6 Re-engineer the subsystem
- 20 Replace faulty subsystem
- 9 Staff Training
- 3 Low Risk No action
- etc

Plant Analysis

- 10 At Risk Plant Systems
- 2 systems with benefit/cost of 1.0 or greater.

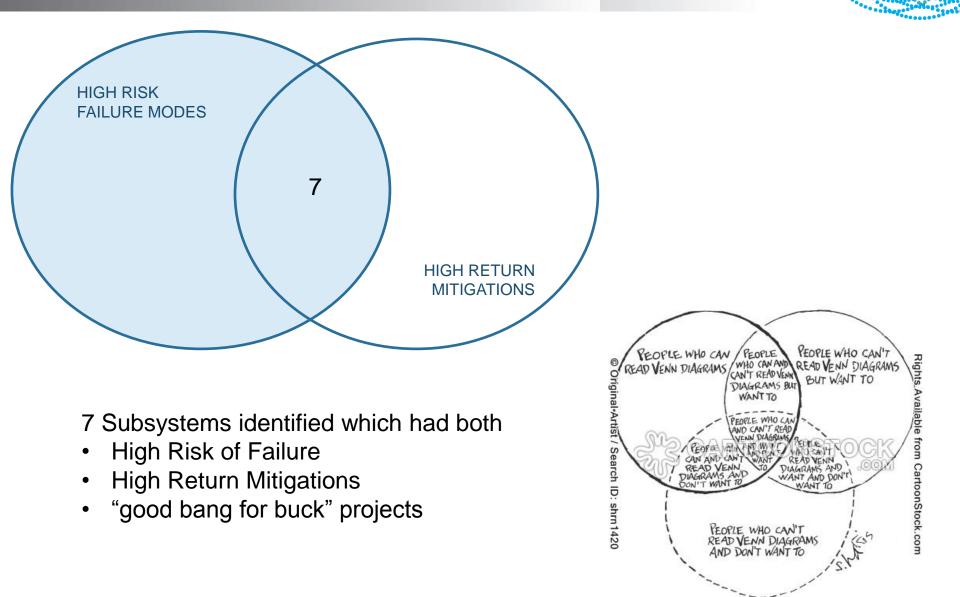
5


Spread sheet consisting of 40 columns X number of failure modes

Failure Analysis	Likelihood of occurrence	Cost of Mitigation	Effort Required one off / ongoing
Critical system (beam loss) < 1 hour	In next 1 year	<\$2K	0 days per year
< 1 day	In next 3 years	\$2K - \$5K	5 days
< 1 week	In next 10 years	\$5K - \$15K	20 days
< 1 month	Has occurred and likely to reoccur	\$15K - \$50K	
> 1 month	Has occurred and unlikely to reoccur	\$50K -\$150K	
Loss of Beam Control	Not expected in life of facility	\$150K-\$500K	
Loss of Beam Quality		> \$500K	
Redundant system			
No impact			

Results for the Accelerators

- 460 failure modes identified
- 25 failure modes without complete mitigations and a risk rating above 20 (approximate cost: \$2.0M)
- 32 possible re-engineering projects identified (approximate cost: \$3.0M)
- 115 failure modes without complete mitigations.(many requiring confirmation of spares holding)



Relative risk of failure modes

Ref #	System(s)	System owner	Sub-system	Description	Failure mode (if specific)
169	Power supply & distribution	Craig Millen	Power supply & distribution	SV 19 feed	Overvoltage (eg: 66kV on 22kV feed)
	Power supply & distribution	Craig Millen	Power supply & distribution	SVW44 feed	Overvoltage (eg: 66kV on 22kV feed)
262	RF	Karl Zingre	LINAC (LI) RF system	LI-LLRF system	failure or performance issues
264	RF	Karl Zingre	LINAC (LI) RF system	LI-PFN-Network system	sub system failure, arcing, limited life time or sudden failure of thyratrons or HV capacitors
265	RF	Karl Zingre	LINAC (LI) RF system	LI-Klystron tank	"sub system failure" but mainly trips and oil replacement due to contamination.
266	RF	Karl Zingre	LINAC (LI) RF system	LI-Klystron	failure focusing coils limited life time klystrons or sudden failure.
268	RF	Karl Zingre	LINAC (LI) RF system	LI-GUN- system	sub systems failure or poor performance, triggers
273	RF	Karl Zingre	LINAC (LI) RF system	LI-PLC	sub systems failure, bugs
287	'RF	Karl Zingre	Booster Ring (BO) RF system	BO-PLC	PLC modules, poor MTTB due to poor system integration, bugs
405	Dlant	Craham Harding	Machina LCW	SRRF Cavities - HOM	Insufficient flow to provent heat damage to part
405	Plant	Graham Harding	Machine LCW	SRRF Cavities - HOM _antennae	Insufficient flow to prevent

Ref #	System(s)	System owner	Sub-system	Description	Failure mode (if specific)
	Power supply &		Power supply &		
169	distribution	Craig Millen	distribution	SV 19 feed	Overvoltage (eg: 66kV on 22kV feed)
	Power supply &		Power supply &		
172	distribution	Craig Millen	distribution	SVW44 feed	Overvoltage (eg: 66kV on 22kV feed)
	Power supply &		Power supply &	LV switchroom -	
182	distribution	Craig Millen	distribution	boards	Fire in a board
					Focus P/S, PSS relays, Insulation monitoring relays or
263	RF	Karl Zingre	LINAC (LI) RF system	LI-Modulator system	failure of other sub systems
				LI-PFN-Network	sub system failure, arcing, limited life time or
264	RF	Karl Zingre	LINAC (LI) RF system	system	sudden failure of thyratrons or HV capacitors
					"sub system failure" but mainly trips and oil
265	RF	Karl Zingre	LINAC (LI) RF system	LI-Klystron tank	replacement due to contamination.
					failure focusing coils limited life time klystrons or
266	RF	Karl Zingre	LINAC (LI) RF system	LI-Klystron	sudden failure.
268	RF	Karl Zingre	LINAC (LI) RF system	LI-GUN- system	sub systems failure or poor performance, triggers
271	RF	Karl Zingre	LINAC (LI) RF system	LI-LCW-Cooling	LCW sensors, leaks
				SRRF Cavities - HOM	
405	Plant	Graham Harding	Machine LCW	antennae	Insufficient flow to prevent heat damage to part

Target projects

Failure modes

- High return and high risk failure modes were reviewed
- Each failure mode identified as being high risk or having a mitigation with a high return was investigated further by the system owner and the risk assessments and planned mitigations confirmed
- The proposed mitigations were then costed in terms of capital cost and effort required
- The resulting action list was used to drive improvements in the accelerator's reliability.

Work so far

- Machine FMEA projects initiated
 - Input to project selection
 - SLED cavity provide redundancy
 - T1 & T2 consolidation Provide UPS backup and protection
 - SRRF flow and temperature monitoring (failing diagnostics)
 - Injection system PLC work
 - Linac gun spares
 - Injection system vacuum upgrade
- Disaster recovery planning
 - Machine/facility core switch upgrade

Obsolescence issues

- Develop a set of criteria for prioritizing obsolescence issues
- Components identified as having a risk of obsolescence are confirmed by the person accountable for the system
- Plans to address major obsolescence issues being developed

Spare parts

- The management of spare parts to be reviewed and issues addressed
- Check spares held (29 items with uncertain spares holding)

Recommendations

Preventative maintenance

- Any preventative maintenance that is not yet in place and can be justified is put in place (~5% of all failure modes)
- The FMEA has increased awareness of the value of many existing preventative maintenance processes

"My grandfather always used to say 'Son, if it ain't dysfunctional, don't attempt pre-emptive maintenance intervention on it.' Or something like that."

Other observations

- Review technical issues identified by the system owners (such as diagnostic systems that are not functioning), including estimates of costs and effort required to rectify the issue.
- The FMEA has raised the awareness of technical support staff of the criticality of functional diagnostic systems.

- The FMEA identified 460 failure modes of the machine
- Each of these modes has been scored for Risk, Benefits of mitigations and costs.
- The FMEA has resulted in 7 critical projects being funded and allocated resources to be undertaken immediately
- It has lead to improvements in many processes
- It has highlighted deficiencies in spare parts management
- Outcomes require good group co-operation
- It is an ongoing process

AKNOWLEDGEMENT

The FMEA project was developed and run by David Tokell, the Head of Engineering at the Australian Synchrotron Light Source.

"The kid's good."